Sampling extremal trajectories for planar rigid
bodies

Weifu Wang and Devin Balkcom

Abstract This paper presents an approach to finding the time-optimal trajectories
for a simple rigid-body model of a mobile robot in an obstacle-free plane. Previ-
ous work has used Pontryagin’s Principle to find strong necessary conditions on
time-optimal trajectories of the rigid body; trajectories satisfying these conditions
are called extremal trajectories. The main contribution of this paper is a method for
sampling the extremal trajectories sufficiently densely to guarantee that for any pair
of start and goal configurations, a trajectory can be found that (provably) approxi-
mately reaches the goal, approximately optimally; the quality of the approximation
is only limited by the availability of computational resources.

1 Introduction

Consider a single rigid body in an otherwise empty plane. The body can translate
in various directions that are described relative to a frame rigidly attached the body,
or can rotate around various rotation centers whose locations are also fixed relative
to the body frame. Let there also be some bounds on the velocities of these transla-
tions and rotations. This paper attacks the problem of finding the shortest or fastest
trajectory to move the body from one configuration to another.

The system studied is quite specific, compared to systems for which general-
purpose motion planning algorithms have been successfully applied, and the algo-
rithm we present is much weaker than algorithms derived from exact analytical de-
scriptions of time-optimal trajectories for specific systems (e.g. Dubins [4], Reeds-
Shepp [16], and others [18, 17, 11, 2, 1, 20, 9]). However, the theorems and results
in this paper show, perhaps for the first time, that provably optimal motion planning
is computationally feasible for a somewhat-general model of mobile robots in the
plane.

Motion planning algorithms that take either a sampling approach (e.g. search-
based planners [3], RRT-based planners [12], probabilistic roadmaps [10]) or an
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Fig. 1: Two control lines, and a corresponding extremal trajectory for each.

optimization approach [15, 14, 5] have been very effective in solving very generally-
stated kino-dynamic motion-planning problems in the presence of obstacles. How-
ever, because these algorithms do not take advantage of the specific details of any
particular robot model, these algorithms do not provably return trajectories that meet
some optimality criteria, and in some cases, cannot guarantee that a solution that
reaches the goal will be found, even if one exists.

Over the past few years, we have been working on generalizing the strong ana-
lytical results that have been found for various vehicles. In previous work, we have
been able to show some strong geometric necessary conditions on optimal trajecto-
ries for a general model of planar rigid bodies [6]. This rigid body might represent
a simple model of a mobile robot (for example, the steered cars studied by Dubins,
Reeds and Shepp, and others [4, 16, 18, 11, 19], differential drives [2], omnidirec-
tional vehicles [1, 20], or an object being manipulated in the plane by a robot arm,
studied by e.g. Lynch [13]).

Essentially, every time-optimal trajectory can be characterized by a line in the
plane, called the control line; motion of the body is essentially determined by the
placement of this line, though the motion of the body is somewhat more complex
than driving directly along the line. For example, figure 1 shows two characteristic
control lines, and corresponding extremal trajectories; the vehicle is an asymmet-
ric differential-drive robot — the maximum speed for the left wheel is 1.8 times the
maximum speed for the right wheel. The problem of solving for an optimal trajec-
tory would seem to be straightforward: given a starting configuration and a goal
configuration, solve for the line placement that causes the vehicle to drive to the
goal.

Solving for the placement of the control line is an inverse kinematics problem.
For some simple robot geometries (e.g., steered cars, differential drives, symmetric
omnidirectional robots), an analytical solution can be found [4, 16, 2, 1, 20], but
for other interesting variations of robot designs, we do not expect to be able to find
analytical solutions.

An approach to solving an inverse kinematics problem is to sample a forwards
kinematics problem. Sample the placements of the control line relative to the start-
ing configuration, determine the structure of each trajectory, and choose a line whose
corresponding trajectory reaches the goal. In [8], we tried this approach with appar-
ently good results, but because for some configurations small changes in the place-
ment of the line can dramatically change the resulting trajectory, we were unable to
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prove that the sampling of line placements could be made sufficiently dense to find
trajectories close to the optimal.

The main contribution of this paper is an alternate sampling strategy, and a col-
lection of theorems that prove that this sampling strategy is sufficient to find approx-
imately time-optimal trajectories that approximately reach any goal configuration.
By approximately reach, we mean that a trajectory is found that passes no more than
some small distance € from any particular configuration, where € can be chosen as
an arbitrarily small positive number. By approximately optimal, we mean that this
trajectory has a time cost that is within & of the optimal time cost, where & can
be chosen to be arbitrarily small, up to limits determined by computational preci-
sion and effort. Based on this collection of theorems, we sketch an algorithm that
densely samples the space of trajectories, building a complete map of trajectories
from a starting configuration (canonically chosen to be at the origin) to every other
configuration that can be reached within some time bound #y,x.

The basic idea is that for every candidate trajectory structure, there is a segment
whose duration is most sensitive to the location of the control line, called the most-
sensitive segment. We sample the duration of this most-sensitive segment densely,
and use this sampled duration to compute some constraints on the placement of the
control line; specifically, the value of the Hamiltonian, H. This H value is char-
acteristic of a trajectory, and if the identity of successive controls in the trajectory
are known, fully determines the structure of the rest of the extremal trajectory. Fur-
ther sampling the duration of the first control in the trajectory fully determines the
placement of the control line.

2 Model and problem statement

We now state the problem and model more formally. Let there be a frame attached to
the body. The configuration of the body is described by the position and orientation
of this frame relative to some some world frame, ¢ = (x,y,0).

Let the control of the body be a Lebesgue-integrable vector function u(r) € R
that describes the translational and rotational velocities of the body at each time. For
example, a constant function u(f) = (1,0,—1) would indicate that the body should
translate with velocity one in the direction of the first axis of the body frame, and
rotate with angular velocity -1 (a rotation in the clockwise direction).

The trajectory of the body in the world frame is determined by integrating the
generalized velocity in the world frame. The controls can be transformed into ve-
locities in the world frame by a 3x3 matrix R that is formed by replacing the upper
left block of a 3x3 identity matrix with a 2x2 rotation matrix:

1) = q(0)+ [ RO(E)u? m

Let the vector function u(r) be constrained within a polyhedron. Polyhedral con-
trol sets appear frequently in models of mobile robots or rigid bodies being pushed



4 Weifu Wang and Devin Balkcom

stably within the plane. For example, bounds on steering angle and translational
velocity for a steered car, or bounds on wheel speeds for differential-drive or three-
wheeled omnidirectional robot, lead to linear (and thus polyhedral) constraints on
controls.

The formal problem statement is, given an pair of start and goal configurations
for a rigid body, as well as the polyhedron bounding the velocity controls, find a
time-optimal trajectory between the two configurations.

3 Necessary conditions for time optimality

In previous work, we have used Pontryagin’s Maximum Principle to study necessary
conditions on time-optimal trajectories for the rigid-body system. We call the tra-
jectories satisfying the Maximum Principle extremal, and only a subset of extremal
trajectories are optimal.

The Maximum Principle states that the Hamiltonian value of the system is the
product of the control and an adjoint function, and during an optimal trajectory the
control must maximize the Hamiltonian value, which is further a constant during
this trajectory.

For the rigid body system we study, we have shown in previous work [7] that the
Hamiltonian can be written in the following way:

H = ki +koy+0(kjy—kox+k3), )

where ki, ky and k3 are constants of integration, and (x,y,0) = R(0(t))u(t) almost
everywhere. Along any optimal trajectory, the control u(#) must maximize equa-
tion 2, for some choice of constants. We can thus think of the Hamiltonian maxi-
mization equation as a control law that describes the evolution of extremal trajecto-
ries.

Initial configuration of the body and the particular choice of constants essentially
determine the structure of the trajectory. For example, if k; =k, =0, and k3 > 0, then
the Hamiltonian reduces to H = k30, and the controls must constantly maximize
angular velocity. In previous work, we have labelled trajectories of this type whirl,
and found a complete analytical solution method. Choosing different constants leads
to different trajectories; the main problem is then to find values for the constants that
generate a trajectory to a particular desired goal.

If k3 + k3 # 0, it is convenient to scale the constants so that k7 + k3 = 1. Then
there is a nice geometric interpretation of the results of the Maximum Principle. For
a particular choice of constants, we can draw a line in the plane with heading along
the vector (ki,k»), a (signed) distance from the origin k3. Changing the constants
moves this control line and gives different trajectory structures (figure 1). If we
attach a frame to the line, with first axis in the direction of (k;,k;) and second axis
in the direction (—kp, k) ), then the Hamiltonian can be written more simply as:
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H =5 +y.8, 3)

with subscript L indicating coordinates measured in the control line frame. xz, is the
projection of the translational component of the body velocity onto the control line,
and yy is the distance of the reference point on the robot to the control line.

For some choices of control line and starting configuration, the evolution of the
trajectory is completely determined by the Maximum Principle and the control line;
we call such trajectories generic, and they are the focus of this paper. Although there
are non-generic (singular and whirl) trajectories, the problem of finding the fastest
non-generic trajectory was previously solved analytically in [6].

3.1 Discrete control set

The maximization condition implies that only controls at vertices of the polyhedral
control space occur in time-optimal generic trajectories [6]; thus we only need to
consider a discrete control set. We denote the available controls (vertices of the
original polyhedral control space) using w;, for i € {1,2,...,m}. For example, the
control u; = (1,0,0), would correspond to driving forwards, and the control u, =
(0,0, 1) would correspond to spinning counterclockwise.

A trajectory structure is a sequence of controls. Denote the trajectory structure by
s. For example, s = (1,3,2,1,3,2,...). The length of s is n, indicating the trajectory
has n segments. It is often necessary to refer to the control at the ith segment in a
trajectory. For convenience, we define a function U (s;), such that U (s;) = u,.

4 Sampling the space of control lines

This section presents the main results. Theorems 1 and 2 show that for a particular
extremal trajectory structure, choosing the durations of the first segment and one
other segment is sufficient to determine the placement of the control line, and thus
the duration of every other segment except the last. Sampling these two durations
sufficiently finely guarantees that extremal trajectories are sampled densely enough
that a trajectory can be found that is in some sense close enough to the time-optimal
in both time (theorem 3) and distance (theorem 4).

Although the paper is technically self-contained, proofs of the theorems rely
strongly on geometric interpretations of the motion of the rigid body relative to
the control line; these geometric interpretations are introduced more gently in [6].

Theorem 1 Given the duration of the kth segment, ti, and the identity of three con-
secutive controls, U (sg—1), U(sy), U(Sg+1), where k € {2,3,...,n— 1}, the Hamil-
tonian value H can be uniquely calculated.

Proof. First consider the case where sy is a translation control; let the velocity be vy.
Figure 2a shows an example. Let M be the location of the body reference point at
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(a) Structure of kth segment where segment k is (b) Structure of kth segment where seg-
translation control ment k is rotation control

Fig. 2: Figures for proof of theorem 1.

the switch fo control U (s), and let N be the location of this point at the switch from
control U (sy). Let P be the point in the control-line frame with the same horizontal
coordinate as N and the same vertical coordinate as M.

From equation 3, the magnitude of the projection of the translation velocity vec-
tor onto the control line is H. The magnitude of the velocity vector perpendicular to

the control line is therefore y/v2 — H2, and we can compute the length ||[N — P||:

[N —P| = tx\/v: — H2. 4)

We know the identities of the previous and next controls; we can use this and
H to compute the distance of the rotation centers (Cy_; and Ci,1) to the control
line. Specifically, C;_; is a distance of H/@y_; from the control line, and Cyy is
H /@1 from the control line. The radii of curvature corresponding to those controls
are Ry and Ry .

The distance ||N — P|| can also be determined from these two rotation controls,
since the translation must be tangent to the circles centered at each rotation center
with corresponding radii. We have:

H HR H HRy_
V=Pl = (- ERe ) - (G ERe ®

W11 Vk W1 Vk

For notational brevity, denote Ry — Rx—1 by Rit1x—1, and 1/@y4; — 1/wg_; by
k11 k1. Combining equations 4 and 5, and solving for H,
1
H— Lk : (6)

2 2 Ripip—1\2 Riy1 k-1
\/tk+wk+1,k71+( ) T 20k k-1

Now, consider the case where U (s ) is a rotation, shown in figure 2b. In previous
work [6], we proved that for any switch from U (s,,) to U(s,), there exists a point
rigidly attached to the robot, such that at the switch between these controls, the



Sampling extremal trajectories for planar rigid bodies 7

point must be on the control line. Call switch U(s;_1) — U (s;) switch k — 1, and
call switch U (sy) — U (sg+1) switch k.

Let M be the location of the switching point corresponding to the switch k — 1, at
the time of this switch. Let N be the location of the switching point corresponding
to the switch k, at the time of this switch. The distances from Cj to N and from C
to M are known [6]. The distance from Cy to the control line is H / .

Some triangle geometry allows a solution for H. Specifically, denote the line
passing through M and N by ycos 8 — xsin 3 + ¢ = 0. Denote the coordinates of M
by (x1,y1), the coordinates of N by (x2,y,), and the coordinates of Cy by (xx,y)-
Then, we have:

yicosf—xisinff+c=0 @)
yacosfB—xpsinfB+c¢=0 (3)
wﬂk:|ykcos[5—xksin[3+c| . 9)

Solving the equation, we have:

B =atan2(y, — y1,x2 —x1) (10)
c=yicosf —xsinf3 (11)
H = ay|yrcos B —x;sinff +c| . (12)
O
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v
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(a) Case in which segment 1 is a translation (b) Case in which segment 1 is a rotation

Fig. 3: Figures for proof of theorem 2.

Theorem 2 Given the identity of the first control, the Hamiltonian value, and the
time for the first segment, t1, the angle of the control line (&) and the distance to the
origin (r) can be calculated; there may be zero, one, or two solutions.

Proof. If U(s;) is translation, take figure 3a as an example. Denote the orientation
of the control line by ¢. Denote the first control U(s;) by (%,y,0). Consider a unit
vector SA pointing along (cos &, sin @), and a unit vector SB pointing in the direc-
tion of (x,y), where ¥ +y? = v%. Denote the angle between these two vectors by 7;
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then cos Y = H /v;. Denote the location of the body reference point at the time of the
first switch by W. We can then derive:

SB = (%,y); SA = (cosa,sina) (13)
|S—W|| =vit;; H/vi = (kcosa+ysina)/v; (14)
tan® §(H + 1) —2ytan % + (H —%) =0 (15)

=tan$ = (y+ /v —H?)/(H +x). (16)

There are up to two solutions for ¢. For each o, to determine r, find a control
J with the largest distance to a line aligned with vector (cos &, sin ¢¢). Denote that

distance by d;, the control j by u; = (x;,y;,0;), the angular velocity by ®;, where

g)z + (%)2 We know that after time #1,
J J

that control will become the one maximizing the Hamiltonian value, so we have:

®; = 6;, and denote the radius by R; = , /(

ICj =Pl =dj; |M—P||=r (17
dj+nVvI—H>= . =||C} - Q|| (18)
chos(atan%+acosf—l)+r:dj. 19)

If the first control is a rotation (figure 3b), we then know where the first rotation
center C is. At the same time, using C; and #;, the duration of the first segment, we
will know the configuration of the robot at the first switch.

For the first segment, we know Cy, and we know H. There exists a circle centered
at Cy with radius wﬂ At the first switch, we can find all the switching points for
switches from Cj to every other control. The control line must pass a switching
point M and tangent to the circle, as shown in figure 3b. At the same time, the
next control U (s;) must satisfy the necessary conditions. Since this is not a singular
trajectory, at each switch, there are at most two controls that could maximize the
Hamiltonian value, so the next control is unique. Therefore, we can calculate the o
and r.

Denote the first control U(s;) by (x1,y1,0;). Consider the switching point for
switch 1: U(s1) to U(s2) (U(s2) can be any possible control), denote this switching
point by M. Since we know the first control and the duration of the first segment
t1, we can then calculate the coordinates of M at first switch, denote by (X, ¥s)-
And we know Cj has world frame coordinates (—3—117 ’é—;) Denote the control line
by ycosa + xsino + r = 0. Since the control line passes through (x;,y,) and has
distance H/®; to Cj, we have:

yscosa —ygsinx+r =0 (20)
H _ 4

_ _ g
o = 8, cos o 3 sinQ +r. 21D
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We can then test if the second control could maximize the Hamiltonian value, and
discard any solutions that violate the Maximum Principle. Then, we can calculate &
and r by solving the above system of equations. O

4.1 Approximation theorems

The two theorems stated above relate the position of the control line to the duration
of different segments of an extremal trajectory. Assume we have two trajectories
with the same structure (control sequence), starting at S. If the durations for all
corresponding segments are similar, then we can see that at any time, the locations
reached by the two trajectories will be close (as measured by Euclidean distance).

Lemma 1. Consider two trajectories Y and Y' with identical structure, equal du-
ration for all segments but one translation segment k, and a small distance K. The
corresponding end points are G and G'. For any translation control k in Y with dura-
tion ty, and the same control k in Yy with durationt'y, if |ty — /| < %, G-(G <k

Proof. Translation is commutative. 0O

Now, let us consider how changing the duration of a rotation control can change
the end point. Given some small angle ¢ and a vector v, assume we can rotate
around any point on v. We want to know how much the end point can move. Given
two points on the vector P and Q, if P is further from the end point, then rotating
around P can change the end point more than rotating around Q. In the following
lemma, we will prove that the upper bound of the movement of the end point is vo.

Lemma 2. Consider a trajectory Y with end point G, a small angle o, and two
points P and Q on the trajectory, with ||P — G|| > ||Q — G||. Form a new trajectory
Y1 with end point Gy by rotating the trajectory from P to G around P by 8, and form
another trajectory Y, with end point G, by rotating the trajectory from Q to G by
0. Then, |Gy — G|| < |G — G||. What is more, for any trajectory Y (end point Gy)
achieved by rotating the trajectory Y around a series of points along the trajectory
with ¢ angle in total, |Gy — G|| is upper bounded by only rotating ¢ around the
furthest point from Gon'Y.

Proof. The trajectory from P to G can be viewed as a vector pointing from P to G.
So can the trajectory from Q to G. Rotating the trajectory from P to G is equivalent
to rotating a vector PQ around P. Then

. O

G~ Gl =2sin PG| @2)
. O

G2~ Gl =2sin 2 0 G| 23)

Since |P—G|| > ||@ — G|, it follows that |G, — G| < ||G1 — G]|.
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Also, the combination of rotating around P and Q by a total angle of ¢ cannot
move the end point further than ||G; — G||. Denote |P — G|| by d;, and denote ||Q —
G|| by d,. Consider a rotation around P by o7, followed by a rotation around Q
by ¢ — o;. Denote this new trajectory by Y3, with end point G3. By the triangle

inequality ||G3 — G| < 2sin G d; 4 2sin 5% dy. Let dy = kd; where 0 < k < 1.

sin%—i—ksin(a_zcl) < sing (24)

The upper bound is achieved when 071 = ¢. Therefore, the change of the end point
with any combination of rotations around points along trajectory with o angle in
total can be upper bounded by rotating around the furthest point from G with . O

Note that, for any given start and goal, we can find a upper time bound fyax
for time-optimal trajectory by planning any (not necessarily optimal) path between
the start and goal (Furtuna [6] gives a simple universal planner that can serve this
purpose). At the same time, we can find a maximum speed over all controls. Denote
the absolute value of this speed by v§,, (compared to the fastest translation v ),
and denote the absolute value of the fastest rotation by wnax. Based on these two
quantities, we can then calculate the furthest point from the goal the trajectory can
reach (because the distance between the reference and the goal may not always be
decreasing) dmax = tmaxvgl,clx /2. Now, we will prove the following theorem.

Theorem 3 Consider two trajectories Y' and Y with the same structure (control
sequence), both starting at S and having time costt' =Y!_,t! andt =Y!_, t;. Denote
the point that Y' passes through at t' by G/, and denote the point that Y passes
through at t by G. For any € > 0, there exists § > 0 such that if Y}, |t/ —t;] < 8,
|G' — G| < €. Specifically, let § be the minimum of VTS and

max

\/((l)rnaxtmaxV%ax/2+V%ax )2+2@nax"gax£_ (wmaxtmax/2+1)"%ax
®Omax V%ax ’

Proof. Based on Lemma 1 and 2, we can derive an upper bound on how much a
change in the duration of a segment can affect the location of the point a trajectory
passes through at a certain time. The segment can either be a rotation or a translation.
First let us consider translation. We have:

IG" =Gl <e (25)
e< &Vl (26)
8> £ 27

Now consider the rotation case. According to Lemma 2, changing the duration
of the rotation around the furthest point from G may lead to the biggest difference
between trajectories in R2. At the same time, for a small time &, any rotation can-
not change the orientation of the body more than 6 @p,x. Then Y can be rotated at
most 8 ®yax from Y’. Denote the upper time bound for Y’ by f.x. The upper time
bound for Y can then be represented by #max + 6. Denote the furthest point by P for
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both trajectories by translating one of the trajectories such that the two trajectories
overlap at P. Without loss of generality, ||[P — G'|| < ||P — G||. We have:

|G’ — G| < & < 2sin(222) | P — G| + 8V (28)
|P— G| < =) 29)

S £ < O 8 L C (30)

5>V (wmaxrmaxv?nax/zwgax>2£ju?vné;v%axe—<wmaxtmax/2+1>vfm. 31)

We require the difference between Y and Y’ to be less than &; therefore, choose the
smaller 6. O

Finally, we need to prove that small changes in #; and # cannot change the dura-
tion of an extremal trajectory too much.

SC

Fig. 4: The intersection between trajectories using the same controls (with different
H values), with switching curves in y — 6 space.

Theorem 4 Consider two extremal trajectories Y and Y' with the same trajectory
structure. Let the duration of the first segments be t; and t|. There exists a most-
sensitive segment k, satisfying the properties below. Let the durations of segments k
be ti and t;. If |ty — 1| < At and |ty —t;| < At, then L1~ |t] — ;] < nAt

Proof. Given a trajectory structure of one extremal trajectory, we will show that
there exists a most sensitive translation control p and a most sensitive control g. A
most sensitive segment k can be derived from control p and control g.

For the first n — 1 segments, we want to prove that even if we change #; and #;
by At and At, the total duration of those segments does not change more than nA¢.
Then, we need to prove that for each segment, changing #; by A#; and changing #;
by At does not change the duration by more than Atz.

The trajectory is represented by H and o. First let us consider . As we have seen
in the previous section, given H, changing o only affects the duration of the first
segment. So, as long as we change the duration of the first control #; by At} < At, we
can be assured that changing #; by At will affect the total duration of the trajectory
no more than At.
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Now, let us consider the Hamiltonian value. For a small, fixed change of H,
the duration of each segment #;,k = 2,3,...,n — 1 may change differently. We will
prove that for this change AH, there exists a segment k such that the duration of kth
segment (the most sensitive one) changes the most. We find the most sensitive seg-
ment k base on the most sensitive rotation control and the most sensitive translation
control.

First, let us consider rotation. Consider the switching points in the control line
frame. At each switch, we can observe the signed distance of the body from the
control line y;, and the angle of the body relative to the control line ;. Imagine
fixing each switching point on the control line and rotating the robot around the
switching point. We then get a set of sinusoids indicating the relative position of y,,
and 6y at a switch for different H values. If we plot these sinusoids in a frame where
yr, is the second axis while 6 is the first axis, we call these sinusoids switching
curves, and this coordinate system y — 0 space.

Now, consider generic trajectories in the y — 6 space; take figure 4 as an example.
Curves YC and YC' follow the same control sequences, but have different H values.
Let the difference in H values be AH. To calculate how much the duration of this
control changes, we need to calculate how much the 8 changes at the intersection.
For a unit change of 0, the y can change no more than max % * A0, which is de-
noted by Ay. We choose a suitable scale of 6 and y such that the switching curve
can be represented by sin 8 and the control curve TC (the control has angular veloc-
ity @; and the radius is R;) is represented by y. = Asin(y0 + ) + B. We have the
following

A=1 (32)

AH < Ay+y.+xA0 (33)
Ay<6 (34)

A0 xy, <AB(HL —Ry) (35)
An =20 < 248 < 200 (36)

So, the most sensitive rotation control (MSRC) is the one with the smallest abso-
lute angular velocity. For unit change of duration of each segment, the AH for the
most sensitive rotation control is the smallest. So, if we change the duration of the
most sensitive control by At, the duration of all the other segments changes by less
than Atr.

Now, let us consider the translation case. Two translations cannot be adjacent
in an optimal trajectory [6]. So, a translation U (s;) (with speed v;) must follow a
rotation U (s;—1 ). The translation is followed by a rotation U (s 1). Since we know
the trajectory structure, we then can calculate the distance the translation need to
cover in control line frame’s y direction, take figure 2a as an example. We know

|IN — P||; therefore, we know the duration of the translation: \}Nz;ip“z. Then,
vi—H
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Fig. 5: An approximate time-optimal motion for the asymmetric differential-drive
derived using the sampling algorithm, with a labelled sequence of rotation centers
corresponding to each control.

H+AH H
Vi (H+AR?E 2

The translation with the smallest v; is therefore the most sensitive translation
control (MSTC). If we change the duration of that segment by At, then the AH is
small enough to ensure that the duration change of all the other segments are smaller
than A¢. Function HiAH — —f__ is increasing with respect to H.
\/vgf(HMH)Z \/vszZ

We can then compare the A#;, calculated from rotation and translation to find the
most sensitive segment k such that for any unit change of H, the duration of segment
k changes the most. Therefore, if we change the duration of that segment by At, the
duration of all the other segments will not change more than A¢, and the difference
between ¢ and ¢’ is guaranteed to be bounded within nAz. O

). (37)

Aty = |01 g41](

5 A sampling algorithm

Based on the above theorems, we now sketch an algorithm that can be used to sam-
ple the space of placements of the control line. The inputs to the sampling algorithm
are: the control set u, an upper bound on the total duration of the trajectory #yax, and
the tolerances € and 8. The output is a list of (¢, r) values describing control line
placements. One of these placements is guaranteed to contain an extremal of the cor-
rect structure and duration to approximately reach any particular goal configuration
closer than #,,y, with time no worse than the optimal time plus 6.

1. Based on tn,x, calculate the maximum possible segment count, nm,x. Periods
have a bounded number of segments. In [7], generic extremal trajectories were
divided into two types: roll and shuffle trajectories. It was further shown that
shuffle trajectories cannot be longer than one period. For roll trajectories, a period
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requires orientation of the robot change 27, which takes a certain amount of time.
Therefore, tmax can be used to bound the number of periods that a roll trajectory
can include.

2. Calculate step size Az. In theorem 3, we proved that for any trajectory, if the total
duration of the trajectory is changed by some &, no point on the trajectory will
move more than €. So, for any given €, we can calculate a satisfying 6. We can
then use theorem 4 to compute a sampling step size At, with Az < 8 /Amax.

3. Calculate every possible extremal trajectory structure given the set of controls,
using the approach outlined in [7].

4. For each trajectory structure, find a most sensitive segment k, using the method
outlined in the proof of theorem 4.

5. For each trajectory structure, sample the duration, #;, of the most sensitive seg-
ment (using At as step size) and compute the corresponding value for H using
theorem 1. If segment k is rotation, an upper bound on #; is 27t/ @y; if translation,
the upper bound is fyax.

6. For each trajectory structure, for each H value, consider each control in the struc-
ture as a possible first control. Sample the first control duration #; using Az. Use
11, H, the identity of the first control, and theorem 2, to compute the location of
the control line, (¢, r). Save each (a, r) pair to a list.

7. For each computed control line placement, sample the total duration of the tra-
jectory, and use the control line to generate (simulate) the trajectory. For each
sampled total duration, calculate the Ag and build the mapping between the tra-
jectory (control line) and Agq.

The algorithm described generates several trajectories that start at a given starting
configuration (canonically, the origin), at least one of which is guaranteed to pass
within within € distance of any chosen goal that can be reached in time less than
tmax, and further, is within & time of the cost of the minimum-time trajectory. 6 and €
may be chosen by the user to be arbitrarily small, subject to available computational
resources.

The argument is as follows. Between a particular g, and g, there exists a time-
optimal trajectory; call it Y*. This optimal trajectory must be extremal, has a partic-
ular structure S*, and has particular durations for each segment. The algorithm con-
siders each possible trajectory structure, and must therefore find a trajectory with
structure S*. Further, $* has a most sensitive segment s;, with duration ¢;. A sam-
pled trajectory is considered with duration 7, such that |t — ;| < At, and because
si is the most sensitive segment, every other segment duration must be within Az of
the optimal.

6 Implementation results

We implemented a simpler (but equally correct) variation on the algorithm described
above in C code. The primary difference between the two algorithms is that instead
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of looping over trajectory structures, the variation loops instead over possible trajec-
tory substructures U (sg—1), U(sx) and U (sg+1). To ensure that all trajectory struc-
tures are considered, it is also required to add a set of certain critical values of H to
the generated list of H values.

We used the implementation first to test the equations described in theorems 1
and 2 for computing r and o given #; and #, against known analytical results for the
differential robot and the omnidirectional robot that compute all segment durations
for a given r and «.

We also used the sample implementation to generate the set of (¢, r) values for
the asymmetric differential-drive robot drive with one wheel that can drive 1.8 faster
than the other, with € = .1, where the distance between wheels is 2. Figure 5 shows
an example near-optimal trajectory. On a standard desktop machine, generating the
complete set of about 10, 000, 000 (o, r) pairs required about nine minutes; us-
ing this set to generate (simulate) a trajectory for each (o, r) pair (with fmax = 10)
required a further nine minutes. Though computationally expensive, it should be
pointed out that this solution finds the complete mapping from a starting configura-
tion to all goals reachable within 10 seconds.

Further testing and simulation of other systems are a current goal, as well as
techniques to improve precision and run-time.

7 Conclusion

The algorithm we presented is fairly specific to a limited class of mobile robots.
However, the approach highlights some ideas that we hope will prove a starting point
for work at the intersection of optimal control and the design of planning algorithms.
First, strong geometric conditions on optimal trajectories derived analytically may
allow representation of optimal trajectories using only a few parameters. Second,
searching this space of parameters directly may miss certain trajectory structures.
However, an indirect sampling method may allow construction of a set of sampled
parameters that do allow guarantees on optimality.

The algorithm presented, in order to guarantee near-optimality, samples trajec-
tories to all configurations in some region — an “all-pairs” approach to the motion
planning problem. Once constructed, this mapping may allow an analysis of the
structure of optimal trajectories of the configuration space, and may be useful for
fast queries about trajectories between particular pairs of configurations.

A related interesting problem that we have not considered in the present paper
is finding a trajectory between a particular pair of configurations, more precisely
and efficiently than finding the complete mapping. Theoretical results about the
relationship between parameters that describe trajectories and the duration of tra-
jectory segments may allow more sophisticated branch-and-bound or local-search
algorithms that are still provably good approximations.

This work was supported in part by NSF CAREER grant I11S-0643476; we also
thank Andrei Furtuna for his advice and suggestions.
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