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Abstract

This paper presents the time optimal trajectories for
differential drive vehicles in the unobstructed plane.
The wheel angular velocities are bounded, but may
be discontinuous. The paper proves the existence
of optimal controls, derives the structure of optimal
trajectories, and develops an algorithm for produc-
ing a time optimal trajectory between any two con-
figurations. Every nontrivial optimal trajectory is
composed of straight segments alternating with turns
about the robot’s center. Optimal trajectories may
have as many as five actions, but four actions are
sufficient—for every optimal trajectory of five ac-
tions, there is an equally fast trajectory with four
actions.

1 Introduction

This paper derives the time optimal trajectories for
a bounded velocity differential drive robot in the
unobstructed plane. “Differential drive” means the
robot is like a conventional wheelchair, using two in-
dependently driven wheels to maneuver in the plane.
“Bounded velocity” means that the wheel angular ve-
locities are bounded, but may be discontinuous. Un-
der these assumptions, we will see that time optimal
trajectories exist for all choices of start and goal, and
are composed of straight lines alternating with turns
about the center of the robot. Optimal trajectories
contain at most three straights and two turns. There
are a number of other restrictions, leading to a set
of 40 different combinations arranged in 9 different
symmetry classes. The simplest motion to a generic

Figure 1: A time optimal trajectory from each non-
trivial symmetry class. Classes H and I are only valid
for small motions—they are magnified five times and
the robot outline is not drawn.
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goal is a turn-straight-turn: turn to face the goal,
roll straight forwards to the goal, and turn to the
goal orientation. In more interesting cases, the op-
timal trajectory contains a turn at an intermediate
“via” point. Figure 1 shows an example trajectory
for each of the nine symmetry classes.

The key results of the paper are:

• Proof of the existence of time optimal trajecto-
ries, and an analysis of the structure of the time
optimal trajectories.

• An algorithm for determining all optimal tra-
jectories between a start and goal pair, and for
determining the time of the optimal trajectories.

• Plots of the “balls” in configuration space: sets
of configurations reachable in a given time.

We apply the methodology pioneered in the work
of Sussmann and Tang, Souères and Boissonat, and
Laumond, to find the time optimal trajectories:

1. Apply Pontryagin’s maximum principle to ob-
tain extremal trajectories. The optimal trajec-
tories are a subset of the extremal trajectories.

2. Develop the properties of the switching functions
to show that the extremal trajectories have a
simple structure.

3. Use the geometry of the extremals to derive fur-
ther necessary conditions for optimality.

4. Determine the start and goal configurations for
which each candidate extremal may be optimal.

1.1 Previous work.

Most of the work on time optimal control with
bounded velocity models has focused on steered
vehicles rather than differential drives, originat-
ing with papers by Dubins [2] and by Reeds and
Shepp [4]. Many of the techniques employed here
are an extension of optimal control techniques de-
veloped for steered vehicles by Souères and Boisson-
nat [7], Souères and Laumond [8] and Sussmann and
Tang [9].

Figure 2: Notation

Previous work on differential drive robots has as-
sumed bounds on acceleration; for example, see pa-
pers by Reister and Pin [5] for a numerical approach,
and Renaud and Fourquet [6] for work on the struc-
ture of optimal trajectories. The bounded veloc-
ity model is simpler than the bounded acceleration
model, and we determine the structures and costs of
the fastest trajectories analytically.

2 Model, assumptions, nota-
tion

We will assume each of the wheel angular velocities
ω1 and ω2 is in the interval [−1, 1]. Accordingly, de-
fine a control region:

U = [−1, 1]× [−1, 1] (1)

and consider the class of admissible controls to be the
measurable functions u(t) mapping the time interval
[0, T ] to U :

u(t) =
(

ω1(t)
ω2(t)

)
(2)

u(t) : [0, T ] → U (3)

Let v and ω be defined

v =
ω1 + ω2

2
(4)

ω =
ω2 − ω1

2b
(5)

and let the state trajectory q(t) = (x(t), y(t), θ(t)) be
defined for any initial state q0 and admissible control
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u(t) using Lebesgue integration:

x(t) = x0 +
∫ t

0

v cos θ (6)

y(t) = y0 +
∫ t

0

v sin θ (7)

θ(t) = θ0 +
∫ t

0

ω (8)

Throughout the paper we use Lebesgue integration
assuming the standard measure.

It follows that for any admissible control u(t) and
initial state q0, an absolutely continuous state tra-
jectory q(t) exists and has a time derivative almost
everywhere, with:

q̇(t) =

 v cos θ
v sin θ

ω

 a.e. (9)

The abbreviation “a.e.” stands for “almost every-
where,” meaning that the equation holds everywhere
except on some set of measure zero. We cannot say
the equality holds for all t since the controls are only
required to be measurable, not continuous or piece-
wise continuous. But two controls that are equal
almost everywhere will yield equivalent trajectories.
Readers unfamiliar with measure theory will not go
too far wrong by assuming the controls are piecewise
continuous, and ignoring the measure theory jargon.
Indeed one result of this work is to show that the time
optimal trajectories may be obtained using piecewise
continuous controls.

The control system equations can be written in a
more convenient form if we define vector fields f1 and
f2:

f1 =


1
2 cos(θ)
1
2 sin(θ)
− 1

2b

 , f2 =


1
2 cos(θ)
1
2 sin(θ)

1
2b

 (10)

Now the control system equations can be written:

q̇ = ω1f1 + ω2f2 a.e. (11)

The vector fields f1 and f2 describe two freedoms
of the robot. We introduce an additional vector field,

the Lie bracket of f1 and f2:

f3 = [f1, f2] =


1
2b sin(θ)
− 1

2b cos(θ)
0

 (12)

The vector field f3 describes a sideways motion that
cannot be achieved by any linear combination of f1

and f2, but can be approximated by parallel parking
motions of the robot.

We also define rectified path length in E2, the plane
of robot positions:

s(t) =
∫ t

0

|v| (13)

and rectified arc length in S1, the circle of robot ori-
entations:

σ(t) =
∫ t

0

|ω| (14)

We introduce some additional notation for trajec-
tories. Later sections show that extremal trajecto-
ries are composed of straight lines and turns about
the robot’s center. We will represent forwards by ⇑,
backwards by ⇓, left turn by x, and right turn by
y. Thus the trajectory structure x⇑x can be read
“left forwards left”. The symbols ⇑, ⇓, x, and y
correspond to vertices of U :

ω1 ω2 Notation
1 1 ⇑
-1 -1 ⇓
-1 1 x
1 -1 y

When necessary, a subscript will indicate the distance
or angle traveled. We will use t and s to represent
turns and straights of indeterminate direction; for ex-
ample, the notation ts means x⇑, x⇓, y⇑, or y⇓.

3 Controllability and existence

This section proves controllability of the differential
drive, and existence of an optimal trajectory between
any pair of start and goal configurations.
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Theorem 1 The bounded velocity differential drive
in the unobstructed plane is controllable; i.e. there is
a trajectory between any given pair of start and goal
states.

Proof: A trajectory of the form y⇑y can reach any
goal from any start configuration. The robot turns
right until it is aligned with the goal position; it drives
forward to the goal position; it turns right to the goal
orientation. �

Theorem 2 For any given start and goal configu-
ration of a bounded velocity differential drive in the
unobstructed plane, there is an absolutely continuous
time optimal trajectory and a corresponding measur-
able control.

Proof: Theorem 6 of Sussmann and Tang [9] gives
conditions sufficient for the existence of a time opti-
mal control from a starting configuration s to a goal
configuration g. For our case the conditions are:

• an admissible control exists taking the robot
from s to g;

• the system state variable q = (x, y, θ) takes val-
ues in an open subset of a differentiable manifold;

• the vector fields f1 and f2 are locally Lipschitz;

• the control u = (ω1, ω2) takes values in a com-
pact convex subset of R2;

• the admissible controls are measurable functions
on compact subintervals of R;

• for every start state and every control over some
time interval, there is a trajectory starting at the
start state, and defined over the whole interval.

Theorem 1 shows that trajectories exist for every pair
of given start and goal states, and the remaining con-
ditions are readily verified. It follows that a time op-
timal trajectory and corresponding control exist for
every given start and goal state. �

4 Pontryagin’s maximum prin-
ciple

This section uses Pontryagin’s maximum principle [3]
to derive necessary conditions for time optimal trajec-
tories of the bounded velocity differential drive robot.
Section 5 provides a more geometric description of the
optimal trajectories. This section logically precedes
section 5, but perhaps it is easier to read them in
parallel.

The maximum principle states that if the trajec-
tory q(t) with corresponding control u(t) is time op-
timal then the following conditions must hold:

• There exists an adjoint function: an absolutely
continuous R3-valued function of time:

λ(t) =

 λ1(t)
λ2(t)
λ3(t)


• The adjoint function is nontrivial, i.e. not iden-

tically zero.

• The adjoint function satisfies the adjoint equa-
tion:

λ̇ = − ∂

∂q
H a.e. (15)

where H : R3×SE2×U → R is the Hamiltonian:

H(λ, q, u) = 〈λ, q̇(q, u)〉 (16)

• The control u(t) minimizes the Hamiltonian at
almost every t:

H(λ(t), q(t), u(t)) = min
z∈U

H(λ(t), q(t), z) a.e.

(17)
Equation 17 is called the minimization equation.

• We define λ0(t) to be the negative of the mini-
mum attained for the Hamiltonian. So

λ0(t) = −H(λ(t), q(t), u(t)) a.e. (18)

and λ0 is constant in time and non-negative.

λ0 ≥ 0 (19)
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4.1 Application of the maximum prin-
ciple to differential drives

To apply the maximum principle to the differential
drive, we begin with the adjoint equation (15). We
substitute the system equations (11) and the defini-
tion of the Hamiltonian (16) into the adjoint equa-
tion. After simplification we obtain:

λ̇ = − ∂

∂q
H = (0, 0, λ1ẏ − λ2ẋ) a.e. (20)

We can then integrate to solve for λ:

λ = (c1, c2, η(x, y)) (21)

where (c1, c2, c3) are arbitrary integration constants,
and we define η to be

η(x, y) = c1y − c2x + c3. (22)

Since the maximum principle says the adjoint func-
tion is not identically zero, the integration constants
c1, c2, and c3 are not all zero, so in fact the adjoint
function is never zero.

Having solved for the adjoint function, we now use
the minimization equation (17) to derive the opti-
mal controls. First we substitute the system equa-
tions (11) into the definition of the Hamiltonian (16):

H(λ, q, u) = 〈λ, ω1f1(q) + ω2f2(q)〉 (23)
= ω1〈λ, f1(q)〉+ ω2〈λ, f2(q)〉 (24)

We define two switching functions ϕ1 and ϕ2 and an
associated function ϕ3:

ϕ1(t) = 〈λ(t), f1(q(t))〉 (25)
ϕ2(t) = 〈λ(t), f2(q(t))〉 (26)
ϕ3(t) = 〈λ(t), f3(q(t))〉 (27)

Substituting ϕ1 and ϕ2 into equation 24 yields:

H(λ(t), q(t), u(t)) = ω1(t)ϕ1(t) + ω2(t)ϕ2(t) (28)

which is minimized by setting each wheel angular ve-
locity ωi to the negative sign of the corresponding
switching function ϕi. (We define the function sign(·)
to be multivalued at zero, taking on any value in the
interval [−1, 1].)

Theorem 3 If q(t) is a time optimal trajectory with
control u(t) for a bounded velocity differential drive
robot, then there is a nontrivial absolutely continuous
adjoint function λ(t) satisfying the adjoint equation,
and the control must satisfy

ω1(t) = −sign(ϕ1(t)) (29)
ω2(t) = −sign(ϕ2(t)) (30)

for almost all t.

Proof: Application of the maximum principle. �

An extremal is any trajectory and associated con-
trol that satisfies the maximum principle. Since the
maximum principle is a necessary condition for time
optimal trajectories, it follows that all time optimal
trajectories are extremals, but not all extremals are
time optimal. For example, we shall see that a turn
in place through an angle of 2π is extremal, but it is
obviously not time optimal.

Before focusing on time optimal trajectories, we
develop more properties of the broader class of ex-
tremals. First, we observe that the three vectors
f1(q), f2(q), and f3(q) are linearly independent for
every q. So equations 25 through 27 define the ϕi

to be the coordinates of λ using the fi as a vector
basis. We noted earlier that the adjoint function λ(t)
is never zero. Consequently we observe that

|ϕ1|+ |ϕ2|+ |ϕ3| 6= 0 (31)

for all t.
We also observe that if we substitute equations 29

and 30 into equation 28 we obtain

−H = |ϕ1|+ |ϕ2| a.e. (32)

which is also equal to λ0 for almost all t.

|ϕ1|+ |ϕ2| = λ0 ≥ 0 (33)

Equation 33 is true for all t, not just almost ev-
erywhere. The reason is that the ϕi(·) are abso-
lutely continuous, since they are inner products of
functions known to be absolutely continuous (equa-
tions 25 through 27).
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4.2 The switching functions

The nature of the extremal controls is best explored
by studying the switching functions ϕi. First we de-
velop expressions for the time derivatives ϕ̇i, using a
result from Sussmann and Tang [9]:

Lemma 1 (Sussmann and Tang’s Lemma 1)
Let fZ be a smooth vector field and let q(t) be a time
optimal trajectory with associated control u(t). Let
ϕZ be given by

ϕZ(t) = 〈λ(t), fZ(q(t))〉 (34)

Then the time derivative is given by

ϕ̇Z = ω1〈λ, [f1, fZ ]〉+ ω2〈λ, [f2, fZ ]〉 (35)

for almost all t.

Proof: given in [9]. �

By substituting f1, f2, and f3 for fZ , we obtain
expressions for ϕ̇1, ϕ̇2, and ϕ̇3, respectively:

ϕ̇1 = −ω2ϕ3 (36)
ϕ̇2 = ω1ϕ3 (37)

ϕ̇3 =
1

4b2
(−ω1 + ω2)(ϕ1 + ϕ2) (38)

for almost all t.
We need one other result before proceeding. By

substituting the definitions of the ϕi, it is easily con-
firmed that for a time optimal trajectory

(ϕ1 + ϕ2)2 + (2bϕ3)2 = c2
1 + c2

2 (39)

which is constant for the duration of the trajectory.
We can subtract the square of equation 33 to obtain

2ϕ1ϕ2(1− sign(ϕ1ϕ2))+(2bϕ3)2 = c1
1 +c2

2−λ2
0 (40)

which is also constant for the duration of the trajec-
tory.

We shall see that optimal trajectories are a se-
quence of singular and generic intervals. First we
develop the singular intervals. We will say that an
extremal trajectory is ω1–singular on some interval
if ϕ1 ≡ 0 on that interval. Similarly we will say that

an extremal trajectory is ω2–singular on some inter-
val if ϕ2 ≡ 0 on that interval. Finally, a trajectory
is doubly singular on some interval when it is both
ω1–singular and ω2–singular on that interval.

We will say that an extremal is trivial if it is mo-
tionless on its entire domain [0, T ]. Note that if a
trivial extremal is time optimal then its domain is
the single instant t = 0.

Theorem 4 If the switching functions ϕ1 and ϕ2

have a common root on an extremal trajectory of the
bounded velocity differential drive, the trajectory is
trivial.

Proof: Let q(t) be an extremal trajectory defined
on the interval [0, T ], with ϕ1 = ϕ2 = 0 at some
point. From equation 33, λ0 = 0. Since λ0 is invari-
ant, it follows that ϕ1 and ϕ2 are identically zero on
[0, T ]. From equation 31 it follows that ϕ3 is nonzero
everywhere on [0, T ].

Since ϕ1 is identically zero, ϕ̇1 is also identically
zero. Since ϕ3 is nonzero, equation 36 implies that
ω2 is zero for almost all t. Similar reasoning shows
that ω1 is zero for almost all t. So the robot never
moves. �

Theorem 5 On a singular interval of an extremal
of the bounded velocity differential drive, the controls
ω1 and ω2 are constant and equal almost everywhere.

Proof: If there is a common root of ϕ1 and ϕ2, then
by the previous theorem the entire trajectory is dou-
bly singular and the result follows easily. We now
consider the case of an ω1–singular interval with no
common root of ϕ1 and ϕ2. ϕ1 is identically zero, so
from equation 33 it follows that

|ϕ2| = λ0 > 0 (41)

so ϕ2 is constant. Likewise, since ω2 = −sign(ϕ2)
(equation 30) almost everywhere on the interval, ω2

is constant, either 1 or −1 almost everywhere on the
singular interval.

Now we note that since ϕ1 is identically zero, so is
ϕ̇1. From equation 36 and the fact that ω2 is nonzero
almost everywhere, we conclude that ϕ3 is identically
zero, and so is its time derivative:

ϕ3 ≡ 0, ϕ̇3 ≡ 0 (42)
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(Equation 42 is true for all t, not just almost every-
where, because ϕ3 is absolutely continuous.) From
equation 38 and the fact that (ϕ1 + ϕ2) is nonzero,
we conclude that (−ω1 + ω2) is zero for almost all t,
or

ω1 ≡ ω2 a.e. (43)

That completes the proof for an ω1–singular interval.
The proof for an ω2–singular interval is similar. �

Theorems 4 and 5 show that the controls on singu-
lar intervals are simple. We now turn our attention
away from singular intervals, to show that the rest of
an extremal is simple as well. We will use the term
generic point to refer to any time that is not a root
of either ϕ1 or ϕ2. We will use the term generic in-
terval to refer to an interval on which every time is
a generic point.

Theorem 6 For an extremal trajectory and corre-
sponding control of the bounded velocity differential
drive, there is a δ > 0, such that every generic point
is in a generic interval of duration at least δ. On a
generic interval the controls are constant.

Proof: The roots of ϕ1ϕ2 are roots of either ϕ1 or
ϕ2, so generic points are those points that are not
roots of ϕ1ϕ2. The generic points are given by the set
(ϕ1ϕ2)−1(R+∪R−). Because (R+∪R−) is open and
ϕ1ϕ2 is continuous, the set of generic points is also
open, relative to the time interval on which the tra-
jectory is defined. So the generic points are a union of
open intervals, except possibly the first interval and
last interval which are only half open. Consider an
arbitrary generic point, and let I be the correspond-
ing interval. The switching functions ϕ1 and ϕ2 do
not change signs on I, and the controls ω1 and ω2 are
constant almost everywhere on I.

Case 1: open interval, ϕ1 and ϕ2 have the same
sign. It follows that ω1 = ω2 almost everywhere,
so from equation 38 we know that ϕ̇3 is zero almost
everywhere, so ϕ3 is constant. From equations 36
and 37 we obtain

ϕ̇1 = −ϕ̇2 = ±ϕ3 a.e. (44)

If ϕ3 is zero, then all the switching functions are con-
stant. The interval cannot be bounded by roots of

ϕ1 and ϕ2, so the extremal is just one big generic
interval.

If ϕ3 is nonzero, then the interval I is bounded
by roots of either ϕ1 or ϕ2, and each is linear in t.
Further we know that

|ϕ1 + ϕ2| = λ0 (45)

So at one end of the interval we have ϕ1 = 0, ϕ2 =
±λ0, and at the other end of the interval we have
ϕ1 = ±λ0, ϕ2 = 0. The length of the interval is
defined to be δ1:

δ1 = |λ0/ϕ3| (46)

Having excluded the case of ϕ3 = 0, we can solve
equation 40 for ϕ3 and substitute:

δ1 =
2bλ0√

c2
1 + c2

2 − λ2
0

(47)

Case 2: open interval, ϕ1 and ϕ2 have opposite
signs. Let s be the sign of ϕ1, either 1 or −1. Sub-
stituting s for ω1 and −s for ω2 in equations 36
through 38 we obtain:

ϕ̇1 = sϕ3 (48)
ϕ̇2 = sϕ3 (49)

ϕ̇3 = − s

2b2
(ϕ1 + ϕ2) (50)

Differentiating equation 50 gives

ϕ̈3 = − s

2b2
(ϕ̇1 + ϕ̇2) (51)

Substituting from equations 48 and 49 gives

ϕ̈3 = − s

2b2
(2sϕ3) = − 1

b2
ϕ3 (52)

since s2 = 1. The solution is of the form

ϕ3 = A cos(
t

b
+ tn) (53)

with constants A and tn to be determined. Differen-
tiating gives

ϕ̇3 = −A

b
sin(

t

b
+ tn) (54)
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Comparing with equation 50 gives

−A

b
sin(

t

b
+ tn) = − s

2b2
(ϕ1 + ϕ2) (55)

Solving for ϕ1 + ϕ2:

ϕ1 + ϕ2 = 2Abs sin(
t

b
+ tn) (56)

Substituting into equation 40 and solving for A:

A =

√
c2
1 + c2

2

2b
(57)

So
ϕ1 + ϕ2 = s

√
c2
1 + c2

2 sin(
t

b
+ tn) (58)

Now we rewrite equation 33 as

ϕ1 − ϕ2 = −sλ0 (59)

Adding and subtracting equations 58 and 59, we can
solve for ϕ1 and ϕ2, respectively:

ϕ1 = s

(√
c2
1 + c2

2

2
sin(

t

b
+ tn)− λ0

2

)
(60)

ϕ2 = s

(√
c2
1 + c2

2

2
sin(

t

b
+ tn) +

λ0

2

)
(61)

Roots of ϕ1 or ϕ2 correspond to solutions of

sin(
t

b
+ tn) = ± λ0√

c2
1 + c2

2

(62)

The present case assumes an open interval bounded
by roots of ϕ1 or ϕ2, which implies that λ2

0 ≤ c2
1 + c2

2.
If λ2

0 < c2
1 + c2

2 the solutions are separated either by
δ2 or by π − δ2, where we define δ2 as

δ2 = 2b sin−1

(
λ0√

c2
1 + c2

2

)
(63)

On intervals of length π − δ2, ϕ1 and ϕ2 have the
same sign, so for the present case the interval is of
length δ2. If λ2

0 = c2
1 + c2

2 the solutions are separated
by bπ, a case already covered by the definition of δ2.
So if the interval I is open, with ϕ1 and ϕ2 having
the same sign, the length of I is δ2.

Other cases: closed and half closed intervals. The
other cases are readily dealt with. If the generic inter-
val is closed then it must be the entire extremal, and
the theorem is trivially true. The remaining cases
are half open intervals, which might be present at
the beginning or end of the trajectory. The proof is
completed by defining δ to be the minimum of δ1, δ2,
and the length of the half-open intervals if present.
�

The last element we need to describe extremals is
the switching. By a switching we mean a point such
that for no neighborhood of the point are the con-
trols constant almost everywhere on the neighbor-
hood. Theorems 4 through 6 show that the controls
on singular and generic intervals are constant. It fol-
lows that every switching is a root of a switching
function, and is not interior to a singular interval (or
a generic interval).

We need to show that extremals have only a finite
number of switchings. If extremals were made up of
generic intervals only, then the lower bound on the
length of generic intervals would imply that every
extremal has a finite number of switchings. Unfor-
tunately singular intervals are not as simple: there
is no lower bound on their length. We must also
exclude the possibility that two switchings might be
separated by neither a generic nor a singular interval.
The following lemma will enable us to deal with both
problems.

Lemma 2 For every extremal trajectory of the
bounded velocity differential drive, if two points are
given, each of them a root of a switching function,
the given points either share a common singular in-
terval or have a generic point between them.

Proof: Let t1 and t2 be the given points, and suppose
there are no generic points between them. Consider
the extremal obtained by restricting the given tra-
jectory to the interval [t1, t2]. Every point on the
restricted extremal is a root of one of the switch-
ing functions. Let R1 = ϕ−1

1 (0) be the roots of the
first switching function, and let R2 = ϕ−1

2 (0) be the
roots of the second switching function. R1 and R2

are closed and their union covers the interval. If the
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intersection R1 ∩ R2 is nonempty, points in that in-
tersection are roots of both switching functions, so
that the entire trajectory is doubly singular. If the
intersection R1 ∩ R2 is empty, then R1 and R2 are
complements. Each is both open and closed, relative
to the interval [t1, t2]. One must be empty, and the
other must be the entire interval, so that the entire
interval [t1, t2] is singular, and the two points share
a common singular interval. �

Theorem 7 For an extremal trajectory defined on
the interval [0, T ], the interval is covered by the clo-
sures of a finite number of generic or singular inter-
vals. There are a finite number of switchings, occur-
ing only at the ends of the intervals. Every interval
is one of three types:

• Doubly singular. Both switching functions are
identically zero. Both controls are zero for al-
most all time—the robot never moves. An ex-
tremal with a double singularity consists of a sin-
gle interval—it is doubly singular throughout.

• Singular. One of the switching functions ϕ1 or
ϕ2 is identically zero, and the other is never
zero. The controls are equal and saturated (1
or −1) almost everywhere, so the robot goes ei-
ther straight forward (⇑) or straight backward
(⇓) at full speed.

• Generic. Neither switching function has a root
anywhere on a generic interval. There are two
cases:

– The switching functions have the same sign.
The controls are equal and saturated almost
everywhere, so, as with the singular inter-
val, the robot goes either straight forward
(⇑) or straight backward (⇓) at full speed.

– The switching functions have opposite sign.
The controls are opposite and saturated
almost everywhere, so the robot turns in
place, either counterclockwise (x) or clock-
wise (y)).

Proof: First we show that the interval is covered
by the closures of the generic and singular intervals.

Suppose otherwise. Then the difference is nonempty,
and is relatively open, comprising a union of intervals
open relative to [0, T ]. Take two points in one of these
open intervals. By lemma 2 they are separated by a
generic point, a contradiction. We conclude that the
closures of the generic and singular intervals comprise
the entire trajectory.

Define the set of delimiting points to include every
root of a switching function that is not interior to a
singular interval. We now show that the delimiting
points are finite in number. By theorem 6 we know
there is a lower bound δ on the length of generic in-
tervals. Suppose we are given three delimiting points.
The first and third must be separated by at least δ,
otherwise the second would be in the interior of a
singular interval by lemma 2. It follows there are no
more than (2T/δ) + 1 delimiting points.

The delimiting points, with the addition of the end-
points 0 and T , define the structure of the extremal.
They delimit a finite sequence of intervals. Each in-
terval is easily shown to be either extremal or generic,
and each is maximal, being contained in no larger
generic or extremal interval. Since switchings occur
only at delimiting points, the switchings are also fi-
nite in number.

The rest follows easily. By theorems 4 and 5 the
controls are constant on singular intervals, and by
theorem 6 the controls are constant on generic inter-
vals. The rest of the theorem follows from the case
structure introduced in the proofs of theorems 4, 5,
and 6. �

We note that although every switching is a delim-
iting point, not every delimiting point is a switching.
There are extremal trajectories, even time optimal
trajectories, comprising two generic intervals sepa-
rated by a delimiting point that is not a switching.

5 Geometric interpretation of
extremals

The previous section defined extremal trajectories,
a superset of time optimal trajectories, and showed
that every nontrivial extremal trajectory is a finite
sequence of straights and turns in place. This section

9



reexamines the structure of extremals with a geomet-
rical perpsective.

The central geometrical construct is a directed line
in the plane we will call the η-line. Recall (equa-
tion 22) that η(x, y) = c1y−c2x+c3, where c1, c2, and
c3 are three real constants whose existence is given
by the maximum principle, and which cannot all be
zero. Assuming that c1 and c2 are not both zero, we
define the η-line to be the locus of points (x, y) such
that η(x, y) is zero. Then for all (x, y) in the plane
we can interpret η(x, y) as the signed distance of the
point from the η-line, scaled by

√
c2
1 + c2

2. We choose
the direction of the η-line so that positive values of η
are to the right, and negative values of η are to the
left.

We can also include c1 = c2 = 0 as a special case.
In that case we will say the η-line is at infinity, and
the entire plane is to the right of the η-line if c3 is
positive, or to the left of the η-line if c3 is negative.

Now it turns out that for an extremal trajectory
the control laws (equations 29 and 30) can be inter-
preted geometrically:

ω1

 = 1 if wheel 2 ∈ right half plane
∈ [−1, 1] if wheel 2 ∈ η-line
= −1 if wheel 2 ∈ left half plane

(64)

ω2

 = 1 if wheel 1 ∈ left half plane
∈ [−1, 1] if wheel 1 ∈ η-line
= −1 if wheel 1 ∈ right half plane

(65)

The left wheel switches only when the right wheel
touches the η-line, and the right wheel switches only
when the left wheel touches the η-line.

The proof is as follows. Recall that the controls are
given by the signs of two switching functions ϕ1(t)
and ϕ2(t). From equations 29 and 30:

ω1(t) = −sign(ϕ1(t))
ω2(t) = −sign(ϕ2(t))

Define the wheel coordinates (x1, y1) for wheel 1
and (x2, y2) for wheel 2. Specifically,(

x1

y1

)
=

(
x− b sin θ
y + b cos θ

)
(66)(

x2

y2

)
=

(
x + b sin θ
y − b cos θ

)
(67)

Figure 3: The switching functions ϕ1 and ϕ2 give
the scaled signed distances of wheels 1 and 2 from
the η-line.

Then the switching functions can be written

ϕ1 = − 1
2b

η(x2, y2) (68)

ϕ2 =
1
2b

η(x1, y1) (69)

which is confirmed by expanding the definitions of
the switching functions (equations 25 through 27),
using the definitions of the vector fields (equation 10),
the expression derived for the adjoint function (equa-
tion 21), the definition of η(x, y) (equation 22), and
also substituting equations 66 and 67 above.

Equations 68 and 69 have a geometrical interpre-
tation illustrated in figure 3. ϕ1 is the negative
signed distance of wheel 2 from the η-line, scaled by√

c2
1 + c2

2/2b. ϕ2 is the positive signed distance of
wheel 1 from the η-line, scaled by the same factor.
Substituting into the control equations (29 and 30):

ω1 = sign(η(x2, y2)) (70)
ω2 = −sign(η(x1, y1)) (71)

where sign(·) may be set-valued, returning the entire
interval [−1, 1] as the value of sign(0). The reader
may readily confirm these are equivalent to equa-
tions 64 and 65, completing the proof.

The result is a geometric version of the main result
of the previous section, theorem 7: For an extremal
trajectory defined on an interval [0, T ], the interval is
a sequence of intervals of the following types:

10



• Doubly singular. The robot sits motionless with
both wheels exactly on the η-line. In this case
the entire extremal is a single interval.

• Singular. The robot rolls straight and parallel
to the η-line, either forward (⇑) or backward (⇓)
with one wheel exactly on the η-line.

• Generic

– The switching functions have the same sign.
The robot straddles the η-line, and rolls ei-
ther straight forward (⇑) or straight back-
ward (⇓), whichever direction is closer to
the η-line direction.

– The switching functions have opposite sign.
The wheels are on the same side of the η-
line. The robot turns in place, either clock-
wise (y) if the robot is to the right of the
η-line, or counterclockwise (x) if the robot
is to the left of the η-line.

Thus the robot’s motion depends on the location of
the η-line, but the location of the η-line is not easily
found. It is defined by the three integration constants
c1, c2, and c3. The maximum principle tells us these
constants exist, but not how to find them. Evidently
there is no direct method for finding the location of
the η-line. Its location is determined in the course
of finding the time optimal trajectories, which later
sections will address.

The geometrical interpretation of the switching
functions yields some further insights into the analy-
sis of the previous section. We have already seen that
ϕ1 and ϕ2 measure the distances of the wheels from
the η-line. There is also a geometric interpretation
for ϕ3. Let β be the robot heading relative to the
η-line.

β = θ − tan−1(−c2,−c1)

Then ϕ3 is the scaled sine of β. It is zero when the
robot’s heading is parallel to the η-line. Hence, as
observed in the proof of theorem 6, when the robot
rolls straight ϕ3 is stationary while ϕ1 and ϕ2 vary
linearly, and when the robot turns all of the ϕi vary
sinusoidally.

Figure 4: Two extremals: tangent CW and zigzag
right. Other extremal types are zigzag left, tangent
CCW, and turning in place: CW and CCW. Straight
lines are special cases of zigzags or tangents.

We also note that equation 40 has a geometric in-
terpretation: it is Pythagoras’s theorem applied to a
triangle whose hypotenuse is the robot wheelbase.

6 Enumeration of extremals

So far we have identified several different types of
generic and singular intervals. However, not all se-
quences of intervals are valid. The robot switches
controls only when a wheel touches the η-line. There-
fore the extremals can be enumerated by constructing
a circle whose diameter is the robot wheelbase. De-
pending on whether this circle is far from the η-line,
tangent to the η-line, or crossing the η-line, different
patterns arise:

• CW and CCW: If the wheelbase circle is entirely in
the open right half plane then the robot turns in
the clockwise direction and can never touch the
η-line (case CW). There are no switchings. CCW is
similar. The structure of CW trajectories is y;
the structure of CCW trajectories is x.

• TCW and TCCW (Tangent CW and Tangent CCW).
See figure 4. TCW arises if the wheel base cir-
cle is in the closed right half-plane and tangent
to the η-line. If no wheel is touching the η-line

11



the robot turns clockwise. If a wheel is touch-
ing the η-line then the robot may either roll
straight along the η-line, or it may turn clock-
wise. Throughout this motion, the wheelbase
circle is always tangent to the η-line and in the
closed right half-plane. The structure of TCW tra-
jectories is an alternation of singular straights
and clockwise turns (y). The turns are all in-
teger multiples of −π, except possibly the first
and last. TCCW is similar.

• ZR and ZL (Zigzag right and zigzag left). If the
η-line intersects the interior of the wheel base
circle then a zigzag behavior occurs, alternating
straights and turns. If the robot initially strad-
dles the η-line, it rolls straight ahead until one
wheel touches the η-line. It then turns until the
other wheel touches the η-line, and then goes
straight again. There are two non-degenerate
patterns: . . . ⇑x⇓y . . . called zigzag right (ZR),
and . . . ⇑y⇓x . . . called zigzag left (ZL). Degen-
erate cases occur when both wheels are touch-
ing the line (the trivial doubly singular case) or
when the robot heading is parallel to the η-line,
in which case it goes straight and never switches.

Every extremal trajectory, and hence every time
optimal trajectory, is one of the types above. For
trajectories of just one or two actions it may not be
possible to identify the type unambiguously. For ex-
ample a straight line, no matter how long, could be
TCW, TCCW, ZR, or ZL. But in most cases it is possible
to tell the difference. We will see that most time op-
timal trajectories have three actions, which is enough
to determine the type. If the turns are all in the same
direction it is a tangent. If the turns alternate direc-
tion it is a zigzag. If the straights are all parallel it
is a tangent. If the straights are not parallel it is a
zigzag.

7 Comparison between steered
cars and differential drives

Section 5 provided a geometric interpretation of dif-
ferential drive extremals. Section 6 used the geome-
try to classify and enumerate the extremals. In this

section we generalize the geometric analysis and ap-
ply it to steered cars as well as differential drives.

Dubins [2], Reeds and Shepp [4], Sussman and
Tang [9], and others have presented the time opti-
mal trajectories for steered cars with bounded veloc-
ity and a constraint on the minimum turning radius.
It might at first seem that a differential drive is just
a steered car with a minimum turning radius of zero.
Then we would expect the optimal differential drive
trajectories to be limits of the optimal steered car
trajectories cars as the minimum turning radius ap-
proaches zero.

However, this assumption quickly leads to contra-
dictions. Turns in place would take zero time, and
trajectories of the form “turn to face the goal, drive
forwards, turn to the desired angle” would always
be optimal. In fact, the robot could spin in place
any number of times before driving towards the goal,
and during any spin in place, the wheel speeds would
be infinite. In order to illuminate the similarities
and differences between the optimal trajectories for
bounded velocity differential drives and steered cars,
we will first consider a common choice of controls.

Velocity and angular velocity controls

For steered cars, the controls are velocity and an-
gular velocity. We may choose the controls for the
differential drive to be (v, ω) also. For both systems,

q̇ =

 v cos θ
v sin θ

ω

 (72)

Reeds and Shepp assumed the control bounds

v = ±1 |ω| ≤ α2 (73)

The parameter α2 expresses the constraint on turning
radius. It is sufficient for our purposes to assume
that α = 1. The admissible controls fall on two line
segments in (v, ω) space. (See figure 5.)

For the differential drive, the wheel speeds are
bounded: (ω1, ω2) ∈ U . We use equations 4 and 5
to map U to (v, ω) space. The result is a diamond,
shown in figure 5. The corners of U map to the ver-
tices of the diamond. As we might expect, the max-
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Figure 5: Control spaces for the Dubins car, the
Reeds and Shepp car, and the differential drive.

imum angular velocity ω is inversely proportional to
the wheelbase of the robot b.

7.1 The maximum principle

We now apply the maximum principle to equation 72,
which holds for both the steered car and the differ-
ential drive. The Hamiltonian for the system is the
inner product of the adjoint vector λ with the state
derivative q̇

H = 〈λ, q̇〉 = λ1v cos θ + λ2v sin θ + λ3ω (74)

We write the adjoint equation

λ̇ = − ∂

∂q
H = (0, 0, λ1v sin θ − λ2v cos θ) (75)

and integrate to solve for λ

λ = (c1, c2, c1y − c2x + c3) (76)

Substituting equation 76 into the Hamiltonian,

H = v(c1 cos θ + c2 sin θ) + ω(c1y − c2x + c3) (77)

Notice that c1y−c2x+c3 = η(x, y). For simplicity,
we will assume that

c2
1 + c2

2 = 1 (78)

Then η(x, y) gives the signed distance of the reference
point of the robot from the η-line. Recall that β is
the orientation of the robot relative to the η-line:

β = θ − tan−1(−c2,−c1) (79)

Substituting into equation 77,

−H = v cos β − ωη (80)

Equation 80 is similar to equation 28: both ex-
press the Hamiltonian as a dot product between the
controls and some function of the configuration. For
the steered car, it turns out that cos β and η are the
switching functions.

7.2 Level sets of the Hamiltonian

The right hand side of equation 80 is a dot product
between two vectors. Define

w = (v, ω) (81)
d = (cos β,−η) (82)

w is the control, and we call d the characteristic vec-
tor. From the maximum principle,

λ0 = max(−H(t)) (83)
〈w, d〉 = λ0 (84)

That is, the control w must maximize the dot prod-
uct, and the dot product is constant.

Equations 83 and 84 lead to a useful geometric
construction. We first consider the differential drive.
Choose a small but nonzero value for λ0 (0 < λ0 < 1),
and consider the point w1 = (1, 0) on the control
boundary, corresponding to the robot driving in a
straight line. There is a line of values for the charac-
teristic vector that make a constant dot product with
w1, labelled “line 1” in figure 6. Similarly, consider
the other three vertices of the control boundary and
construct three corresponding lines. If d falls along
one of the lines, the dot product in 84 will be equal
to λ0 for at least one of the controls w1, w2, w3, or
w4.

The maximum principle gives an additional con-
straint, described by equation 83. The fact that the
control must be maximizing restricts the possible val-
ues of the characteristic vector to the bold rectangle
formed by the four lines in figure 6. No new points
are added to or removed from the rectangle when we
consider the remaining admissable controls.
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Figure 6: Geometric construction of a level set of the
Hamiltonian for the differential drive.

If we consider the Hamiltonian as a function of the
characteristic vector

H(d) = −〈w(d), d〉 (85)

then the constructed rectangle is a level set of the
Hamiltonian:

d ∈ H−1(−λ0) (86)

We may find other level sets of the Hamiltonian by
scaling λ0. Geometrically, increasing λ0 uniformly
scales the constructed rectangle. However, there is
one additional constraint: the first element of the
characteristic vector d is cos β ≤ 1. If λ0 is large, then
parts of the constructed rectangle must be clipped to
satisfy this constraint. The first box of figure 7 shows
some level sets of the Hamiltonian for the differential
drive.

In order to satisfy the maximum principle, the
characteristic vector d must fall on a single level set
of the Hamiltonian. Furthermore, the characteristic
vector is an absolutely continuous function of time.
If the level set of the Hamiltonian is comprised of
disjoint sections (λ0 large), then the characteristic
vector will be restricted to one of the sections.

Since the level sets of the Hamiltonian are qualita-
tively different for large and small λ0, we expect the
extremal trajectories to be qualitatively different for

large and small λ0. In fact, the value of λ0 provides
a convenient way to distinguish the classes of trajec-
tories CW, CCW, TCW, TCCW, ZL, and ZR described in the
previous section.

• λ0 > 1: The robot is far from the η-line, and
the maximizing control will always be one of y
or x. This corresponds to the trajectory classes
CW and CCW, and is shown in the first column,
second row of figure 7.

• λ0 = 1: One of the robot’s wheels falls on the
η-line. This corresponds to the trajectory classes
TCW and TCCW, and is shown in the first column,
third row of figure 7.

• λ0 < 1: The robot is straddling the η-line. This
corresponds to the trajectory classes ZL and ZR,
and is shown in the first column, fourth row of
figure 7.

We may apply the same geometric approach to the
steered car. To find candidate values for the charac-
teristic vector, we choose a value for λ0 and consider
each of the possible controls. For small λ0, the level
sets of the Hamiltonian are diamonds in the control
space. For large λ0, we clip the diamonds to satisfy
the constraint that | cos β| ≤ 1. The first row, sec-
ond column of figure 7 shows the result. Once the
level sets are constructed, we may again classify the
trajectories by the value of λ0:

• λ0 > 1: The robot is far from the η-line, and the
maximizing control will either always maximize
or minimize ω. The robot follows successive half-
circles, switching driving direction but maintain-
ing a constant angular velocity. The second col-
umn, second row of figure 7 shows an example.

• λ0 = 1: The robot is always either following a
π/2 arc of a circle with an endpoint on the η-line,
or driving in a straight line along the η-line. See
the second column, third row of figure 7.

• λ0 < 1: The robot is near the η-line, and makes
a sharp angle with the η-line. The extremal tra-
jectory resembles a parallel parking maneuver.
See the second column, fourth row of figure 7.
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Figure 7: Classification of extremals by λ0 and level sets of the Hamiltonian, for both the differential drive
(left column) and the steered car (right column.)
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7.3 The Hamiltonian as power

We provide one more intpretation of the maximum
principle that applies to both the differential drive
and the steered car. The right hand side of equa-
tion 80 is a dot product between a generalized veloc-
ity and a vector dependent on the location of the
robot relative to some line. Suppose a force and
torque are applied to the robot, corresponding to a
unit force applied along a line of action coincident
with the η-line, but with opposite direction. Given a
trajectory we could find the work done by the robot
against this force. The time derivative of the work is
the power. With a suitable choice of units the power
p is given by

p = v cos β − ωη (87)

The right hand side of this equation and the right
hand side of equation 80 are the same.

Informally, the maximum principle then tells us
that the time optimal trajectories for both the dif-
ferential drive and the steered car maximize power
along or against some line of force in the plane; the
η-line is this line of force.

8 Further conditions on time
optimal trajectories

This section turns to the paper’s primary focus: time
optimal trajectories of bounded velocity differential
drive vehicles. Every time optimal trajectory is an
extremal, and therefore must be of type CCW, CW,
TCCW, TCW, ZR, or ZL. In this section we find addi-
tional necessary conditions optimal trajectories must
satisfy, ultimately finding that no time optimal tra-
jectory can have more than three straights and two
turns. We use these results to enumerate optimal
trajectory types.

We first make a useful observation about optimal
trajectories. Recall equations 13 and 14: s(t) is the
rectified arc length of the robot’s path measured in
the plane E2, and σ(t) is the rectified arc length of
the robot’s orientation measured in S1.

Theorem 8 For an optimal trajectory defined on the
interval [0, T ], for all t ∈ [0, T ],

t = s(t) + bσ(t) (88)

Proof: By theorem 7 a nontrivial extremal trajec-
tory is composed of intervals which are either turning
in place or going straight at maximum velocity. The
time required for each straight is just the length, and
the time for each turn is b times the arc length. The
result applies immediately for nontrivial time opti-
mal trajectories, and also applies to a trivial (doubly
singular) time optimal trajectory since in that case
T is zero. �

In [1], we demonstrate the more general result that
equation 88 actually holds for any trajectory such
that max(|ω1(t)|, |ω2(t)|) = 1 almost everywhere; i.e.,
for trajectories in which one control is always satu-
rated. This may provide some intuition for why spins
in place and straight lines are faster than curves. The
next result gives a limit on how much time a robot
following an optimal trajectory may spend spinning
in place.

Theorem 9 For every time optimal trajectory
σ(T ) ≤ π.

Proof: We first prove the result for the fastest tst
trajectory, and then extend the result to the general
case. Consider the fastest tst trajectory between a
given start and goal. Obviously the straight action
connects the start to the goal. Without loss of gener-
ality, we orient coordinates so the angle from start to
goal is 0. The robot’s heading during the straight is
either 0 or π. Consider the robot’s heading over the
course of the entire trajectory. It starts at θs, turns
to either 0 or π, and then turns to θg. The fastest
tst trajectory minimizes the arc length of a path on
the circle that satisfies those constraints. Assuming
that θs and θg are in the range [−π, π), the minimum
arc length is

min(|θs|+ |θg|, 2π − (|θs|+ |θg|))

which cannot exceed π.
Now we extend the result to the general case. By

theorem 8 the time of the optimal path is of the form
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Figure 8: Zigzags of three turns are not optimal

T = s(T ) + bσ(T ) where s(T ) is the total distance
traveled in the Euclidean plane, and σ(T ) is the total
arc length traveled on the circle. The fastest tst
trajectory minimizes s(T ) and achieves σ(T ) ≤ π.
Any trajectory with σ(T ) > π would be slower than
than the fastest tst trajectory, and could not be time
optimal. �

Theorem 10 Tangent trajectories containing more
than three actions are not optimal.

Proof: An extremal of type TCW or TCCW alternates
turns and straights. Any full untruncated turn must
be a multiple of π. If there are four actions, there
is at least one untruncated turn of length at least π,
and a second turn of nonzero length. The rectified
arc length σ would be more than π, contradicting
theorem 9. �

Zigzag trajectories are composed of alternating
turns and straights. Successive turns or straights
must be in opposite directions, but have the same
magnitude if untruncated. Simple geometry also
gives a relationship between φ, the angle of each turn,
and d, the length of each straight:

d = 2b tan
(

φ

2

)
(89)

Theorem 11 Zigzag trajectories containing three
turns are not optimal.

Proof: Consider a zigzag with three turns, and two
straights. The straights are the same length, so the
path comprises two legs of an isoceles triangle. Con-
struct the circle containing the start, the goal, and
the via point as in figure 8. If we perturb the via

Figure 9: Periodicity of a zigzag

point to a nearby point on the same circle the turning
time is unchanged—the second turn at the via is un-
changed, while changes in the first and third turns are
equal and opposite. For the same perturbation the
translation is decreased. Hence the original zigzag
was not optimal. �

Zigzags are also periodic in robot heading and dis-
tance from the η-line. Recall that β is the robot head-
ing relative to the η-line and η is the signed scaled
distance from the η-line. Let τ be the smallest posi-
tive time such that:

β(t) = β(t + τ)
η(t) = η(t + τ)

Theorem 12 A zigzag trajectory of more than one
period is not optimal.

Proof: Consider a zigzag of more than one period,
beginning at time 0 and ending at time T > τ . Either
σ(T ) exceeds 2φ, or s(T ) exceeds 2d. By theorem 11,
the zigzag is not optimal if σ(T ) > 2φ. It remains to
be shown that the zigzag is not optimal if s(T ) > 2d.

If s(T ) > 2d, then there are three straights. The
trajectory is of the form satφsdt−φsb. Since the
first and last straights are parallel, reordering the ac-
tions yields an equivalent trajectory: sa+btφsdt−φ.
If s(T ) > 2d, then a + b > d. The first straight is too
long. Thus we have a trajectory which costs no more
than the original but which is no longer a legitimate
zigzag, nor any other extremal trajectory. Since it
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is not extremal, neither it nor the original trajectory
can be optimal. �

We apply theorems 10, 11, and 12 to the extremal
trajectory types CCW, CW, TCCW, TCW, ZR, or ZL to enu-
merate the types of optimal trajectories. Table 1
shows the results.

y⇑y y⇓y x⇑x x⇓x
⇑yπ⇓ ⇓yπ⇑ ⇑xπ⇓ ⇓xπ⇑
⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇓y⇑x⇓

Table 1: Enumeration of optimal trajectory types.
The structure of any optimal trajectory must be one
of the above, or a subsection of one of the above.

9 Symmetries

Further analysis of the time optimal trajectories is
difficult because of the large number of cases. This
complexity is reduced using symmetries developed
by Souères and Boissonnat [7] and Souères and Lau-
mond [8] for steered cars.

The symmetries are summarized in figure 10. Let
u be a control from q = (x, y, θ) to the origin. Then
there are seven controls symmetric to u obtained by
applying one or more of three transformations de-
fined below. These transforms are isometries; if u is
optimal from q, then the transformed control τ(u)
is optimal from the transformed configuration T (q),
where τ is some combination of τ1, τ2, and τ3, and T
is the corresponding combination of T1, T2, and T3.

Geometrically, the transformations reflect the
plane across the origin or across one of three other
lines: the x-axis, a line ∆θ at angle (π +θs)/2, or the
line ∆⊥

θ at angle θs/2. The three transformations on
controls are:

τ1: Swap ⇑ and ⇓
τ2: Reverse order
τ3: Swap y and x

The three corresponding transformations on tra-
jectories are:

Figure 10: Given an optimal trajectory from “base”
with heading θs to the origin with heading θg = 0,
transformations T1,T2, and T3 yield up to seven other
optimal trajectories symmetric to the original.
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base T1 T2 T3 T2 ◦ T1 T3 ◦ T1 T3 ◦ T2 T3 ◦ T2 ◦ T1

A. y y y x y x x x
B. ⇓ ⇑ ⇓ ⇓ ⇑ ⇑ ⇓ ⇑
C. ⇓y ⇑y y⇓ ⇓x y⇑ ⇑x x⇓ x⇑
D. y⇓y y⇑y y⇓y x⇓x y⇑y x⇑x x⇓x x⇑x
E. ⇑xπ⇓ ⇓xπ⇑ ⇓xπ⇑ ⇑yπ⇓ ⇑xπ⇓ ⇓yπ⇑ ⇓yπ⇑ ⇑yπ⇓
F. x⇓y x⇑y y⇓x y⇓x y⇑x y⇑x x⇓y x⇑y
G. ⇓y⇑ ⇑y⇓ ⇑y⇓ ⇓x⇑ ⇓y⇑ ⇑x⇓ ⇑x⇓ ⇓x⇑
H. x⇓y⇑ x⇑y⇓ ⇑y⇓x y⇓x⇑ ⇓y⇑x y⇑x⇓ ⇑x⇓y ⇓x⇑y
I. ⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇑y⇓x⇑ ⇓y⇑x⇓ ⇓y⇑x⇓ ⇑x⇓y⇑ ⇓x⇑y⇓

Table 2: The forty optimal trajectory types sorted by symmetry class.

T1: q = (−x,−y, θ)
T2: (x, y) = Rot(θ)(x,−y)
T3: q = (x,−y,−θ)

Each transformation is its own inverse, and the
three transformations commute. For any given base
trajectory, the transformations yield up to seven dif-
ferent symmetric trajectories. The result is that all
optimal trajectories fall in one of nine symmetry
classes. We sort the optimal trajectory structures
presented in table 1 by symmetry class to obtain ta-
ble 2. We can analyze all types of trajectories by an-
alyzing just the “base” trajectories (the first column
of table 2), and then applying the transformations
T1, T2, T3 to obtain the other members of the class.

10 Time optimal trajectories

In this section we identify the time optimal trajecto-
ries between any given start and goal configuration.
We use a goal-centric coordinate system, with the ori-
gin coincident with the goal position, and the x axis
aligned with the goal heading.

The symmetries of the previous section greatly sim-
plify our analysis. We analyze only a base subset of
the possible starting configurations, and use the sym-
metries to extend the analysis to the other starting
configurations. In principle, the analysis is carried
out by the following steps:

1. For each trajectory type, we identify every fea-
sible choice of start configuration (x, y, θ). This

defines a map from trajectory type to a region
of configuration space.

2. Now we consider a point in configuration space
(x, y, θ). If it is in only one region, then the cor-
responding trajectory type is optimal from that
point.

3. When regions overlap, we derive additional nec-
essary conditions for optimality or calculate the
actual times for each trajectory type to disam-
biguate.

To illustrate this procedure, we present the fol-
lowing example (figure 11). The feasible regions for
⇓y⇑x and x⇓y⇑ overlap. For almost all qs in the
overlap, there are two possible extremals but only
one true optimal trajectory. It turns out that the
∆θ line is a decision boundary: for qs to the right of
∆θ the optimum is x⇓y⇑, and to the left of ∆θ the
optimum is ⇓y⇑x. Figure 11 illustrates the proof.
First we observe that the alternatives give equal time
on the ∆θ line, because that line is the axis of reflec-
tion for the T1 ◦ T2 isometry. So both trajectories are
optimal on ∆θ.

Consider a ⇓y⇑x trajectory from the start pose
shown. When the trajectory crosses ∆θ during the ⇓
action, the remaining cost is unchanged if it switches
to x⇓y⇑. But then the total trajectory would have
a structure of ⇓x⇓y⇑, and would not be a legitimate
extremal. �

Similar techniques can be applied to the other re-
gions. The end result is a mapping that defines the
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Figure 11: An example of overlapping regions. (a)
Plots of the feasible regions for x⇓y⇑ and ⇓y⇑x.
(b) The trajectory shown is extremal, but not opti-
mal, so ∆θ is the decision boundary. (c) The overlap
region is partitioned according to which trajectory
class is time optimal.

set of optimal trajectories from each point in configu-
ration space to the origin. This mapping is illustrated
by showing a slice at θ = π/4 (figure 12). The map-
ping from start configuration to optimal trajectory
is usually, but not always, unique. At some bound-
aries in the figures there are two distinct trajectories
that give the same time cost. More interesting is the
case at θ = 0 where a continuum of different trajec-
tories of type A are all optimal, bounded by optimal
trajectories of type B.

11 Algorithm for optimal con-
trol and value function

Figure 12: Optimal control for start configuration
qs = (x, y, π

4 ) and goal configuration qg = (0, 0, 0),
with isocost lines. Coordinates are measured in units
of b.

We now present an algorithm to determine the op-
timal trajectories between a given start and goal po-
sition, and the time cost of those trajectories. For
each optimal trajectory structure, the necessary con-
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ditions yield a region. (Twelve such regions are shown
in figure 12.) The algorithm determines which re-
gion(s) the start configuration (x, y, θ) falls in, and
then calculates the value function for one of the op-
timal trajectory structures. For example, the func-
tion ValueBaseTSTS below calculates the cost of the
fastest trajectory with a structure of x⇓y⇑.

Procedure ValueBaseTSTS(q = (x, y, θ))
arccos(1− y)− θ/2− x +

√
y(2− y)

End ValueBaseTSTS

Procedure ValueBaseSTS(q = (x, y, θ))
If y = 0 then |x|+ θ/2
else y(1 + cos (θ))/sin (θ)− x + θ/2

End ValueBaseSTS

Procedure ValueBaseTST(q = (x, y, θ))
r = ‖(x, y)‖
ζ = arctan(y, x)
r + min (|ζ|+ |ζ − θ|, 2π + |ζ| − |ζ + θ|)

End ValueBaseTST

We now can define OptBVDD (optimal bounded
velocity differential drive). The function recursively
applies symmetry transforms until the configuration
is in the base region.

The optimal trajectory structure can then be deter-
mined based on the necessary conditions for extremal
trajectories to be optimal. The value for that trajec-
tory structure is calculated. The recursion applies
the appropriate combination of τ1, τ2, and τ3 trans-
forms to the base trajectory structure to determine
the actual optimal trajectory structure.

Procedure OptBVDD(q = (x, y, θ))
if θ ∈ (π, 2π) then τ3(OptBVDD(T3(q)))

r = ‖(x, y)‖
ζ = arctan(y, x)
if ζ ∈ ((θ + π)/2, π) ∪ ((θ − π)/2, 0)
then τ2(OptBVDD(T2(q)))

if y < 0 then τ1(OptBVDD(T1(q)))

if ζ ≤ θ
return(y⇓y, ValueBaseTST(q))

else if y ≤ 1− cos (θ)
return(⇓y⇑, ValueBaseSTS(q))

else if r ≥ tan (ζ/2)
return(x⇓y, ValueBaseTST(q))

else
return(x⇓y⇑, ValueBaseTSTS(q))

End OptBVDD

For the sake of brevity, certain special cases have
been omitted from the pseudocode presented. When-
ever two symmetric regions share a boundary, the
fastest trajectories for both regions are optimal on
the boundary. For example, if the robot starts at
(0, 1, π), then both the trajectories y⇓y and x⇑x
are optimal.

There are two other cases where multiple trajec-
tories will be optimal. When θs = 0, there may
be a continuum of optimal five-action trajectories,
bounded by two different four-action trajectories.
When θs = π, there may be a continuum of optimal
stπs trajectories (Class E), bounded by two-action
trajectories of class C.

In all cases, the above algorithm will return a sin-
gle optimal trajectory. Some additional bookkeeping
would allow all of the optimal trajectories to be re-
turned.

Slices of this value function allow the regions in
which various extremal trajectories are optimal to be
seen more clearly. For example, figure 12 shows the
slice for θ = π/4.

12 Performance limits

The level sets of the value function show the reachable
configurations of the robot for some given amount of
time. Figure 13a shows the shape of this region for
time 1. (x, y, and time are normalized by b, the width
of the robot.) Notice that in time 1, there are head-
ings that the robot cannot reach; there is not enough
time for the robot to turn to the heading θ = π. The
thin sliver-like appearance of the reachable configu-
rations confirms the intuitive observation that it is
easier to move forwards or backwards than sideways.
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(a) (b)

(c) (d)

Figure 13: Reachable configurations in normalized time 1, 2, and 3 (a, b, and c respectively), and a cross
section for values 1, 1.5, 2, 2.5, and 3 (d).
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Figures 13b and 13c show the shapes of this region
for time 2 and time 3 respectively. In the figure for
time 2, there is enough time for the robot to reach
any heading. In the figure for time 3, we can see that
the cross sections for fixed θ are fatter; i.e., with
more time the robot is able to go nearly as far in the
sideways directions as in the forwards or backwards
directions. Figure 13d shows a cross sectional view
of the configurations the robot can reach in times
1, 1.5, 2, 2.5, and 3.

13 Conclusion

A simple kinematic model of a differential drive robot
with bounds on the speeds of the wheels was derived.
We applied Pontryagin’s maximum principle to de-
rive geometric constraints on the optimal trajecto-
ries; trajectories satisfying these constraints are ex-
tremal trajectories. We derived conditions necessary
for extremal trajectories to be optimal. These condi-
tions require that optimal trajectories fall in one of 40
extremal trajectory classes. We then applied symme-
tries developed by Souères and Boissonnat to identify
nine symmetry classes. We analysed each of the nine
classes to determine the start and goal configurations
for which it was optimal. This yields a simple algo-
rithm to determine the optimal trajectory structure
and cost between any two configurations.
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